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1. Background and Introduction 

1.1 Background 

The US Army Research Laboratory’s (ARL) Vehicle Technology Directorate 

(VTD) and the Human Research and Engineering Directorate (HRED), as part of 

VTD’s 6.1 refresh program, have initiated a program called Adaptive Perception 

Processes for Learning from Experience (APPLE). The program’s goal is to 

develop a set of perception capabilities that are sufficient to enable continuous 

object learning, where new object instances and categories can be learned from 

experience in an open-set framework.  

HRED’s Symbolic and Sub-symbolic Robotics Intelligence Control System  

(SS-RICS) (Kelley 2006) was inspired by the Adaptive Character of Thought – 

Rational (ACT-R), cognitive architecture developed by John Anderson at Carnegie 

Mellon University (Anderson and Lebiere 1998). SS-RICS has been under 

development since 2004, and since that time numerous algorithms have been added 

to the robotics architecture. In order to leverage previous SS-RICS development, 

we have developed a software inventory of the algorithms within SS-RICS that are 

applicable to the APPLE program (Owens and Osteen 2017). Additional leveraging 

of previous SS-RICS development is being done to develop a baseline pipeline in 

order to accomplish the task of a continuous object recognition system. The order 

and sequencing of algorithms in the pipeline is still subject to research and debate, 

and those questions will be easier to address following the development of a 

complete pipeline.  

This technical report documents an initial object categorization pipeline by HRED. 

The work leverages current state-of-the-art work, which combines nonparametric 

models with neural networks, within an object categorization framework. This 

work documents an initial HRED pipeline, which will be improved as the APPLE 

program progresses. In order to document improvements to the pipeline, this 

manuscript also reports on the comparison of 2 different types of neural networks 

(Section 5). This algorithm comparison is part of the general pipeline improvement 

process and will be continued with other algorithms as the APPLE program 

progresses.   

1.2 Introduction 

Object recognition, or being able to visually identify and semantically label an 

object, can be a difficult and challenging problem for computer vision systems. A 
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quote from an article in The New York Times illustrates the history of this endeavor: 

“In 1966 Professor Minsky gave an undergraduate, Gerald Sussman, the task of 

building an object-recognition device out of a computer and a television” (Horgan 

1997). Sussman did not succeed. The problem turned out to be much more difficult 

than people had imagined during the early years of artificial intelligence (AI). 

Humans are so capable of being able to label objects from a variety of viewpoints 

and distances that people take for granted how complex the task can be, especially 

for a computer system. To better understand these complexities, Scholl (2001) 

explored how spatiotemporal features could be more tightly coupled with object 

representations than surface-based features such as color and shape. In fact, when 

it comes to human development, Scholl highlights studies that show how 10-month-

old infants will use spatiotemporal information, but not featural information, in 

order to assess an object’s unity. Scholl further explains that typically, once an 

infant reaches 12 months, the infant will begin to use both spatiotemporal and 

feature information processing for object recognition, which then becomes the 

persistent interactive object recognition process that carries into adulthood. 

Replicating this learning/developmental process for a computer system is quite 

challenging, and will require more work in understanding and characterizing both 

human learning mechanisms and analogous machine learning algorithms. 

In order to begin comparing methods for a baseline pipeline for continuous object 

recognition within APPLE, we are using motion tracking and detection algorithms 

from the Open Computer Vision (Open CV) library (Shapiro and Stockman 2001), 

which are already implemented within SS-RICS. This approach of using motion for 

object recognition is in contrast to many traditional AI algorithms, which use static 

images as initial stimuli to a pipeline of algorithms (Everingham et al. 2010). 

Additionally, the Structure from Motion (SfM) field within the AI community 

largely focuses on motion for 3-D reconstruction and registration—but not for 

object recognition per se and not for segmentation (Shapiro and Stockman 2001). 

We feel that the use of static images in the past has limited the success of object 

recognition pipelines, and therefore we will emphasize incorporating temporal 

streams of data for the baseline.  

Neural networks have long been used for object recognition and classification tasks. 

However, neural networks suffer from some inherent problems, including the hand 

crafting of the topology (Arel et al. 2010) and catastrophic forgetting (McCloskey 

et al. 1989). Recent work has used hybrid architectures, which include 

nonparametric models, to overcome some of the limitations of traditional neural 

networks. These models are then combined with convolutional deep learning 

networks for the final classification, yielding state-of-the-art results (Vinyals et al. 

2016). This hybrid approach has the advantage of allowing for one-shot learning, 
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with small samples of data, while still being able to have good classification 

performance and not suffer from catastrophic forgetting. 

2. Hypothesized Baseline Pipeline 

We hypothesized the APPLE pipeline would require several separate components 

in order to make up the entire algorithm set capable of object categorization. In its 

simplest form the pipeline needs to have: 1) an input from the camera, 2) a 

segmented object from the input, 3) an algorithm that categorizes the objects, and 

4) a neural network to classify the objects. These are the basic requirements for the 

pipeline and are discussed in more detail below. 

Additionally, we are interested in testing various parts of the pipeline individually, 

so we have included tests of different types of neural networks (Section 5). The 

goal is to be able to substitute different algorithms at various stages of the pipeline. 

This would allow for optimum performance across the entire pipeline.  

Based on these requirements we proposed an initial pipeline (see Fig. 1, Owens and 

Osteen 2017) as part of the 6.1 refresh process. Figure 1 represents the core set of 

components that are hypothesized to be sufficient to enable continuous object 

learning. In the project proposal, we state that our central hypothesis is that 

continuously learning objects from experience requires mechanisms to do the 

following: 

1) Focus attention on things and stuff of interest.  

2) Track ego and object-motion for object permanence and common fate. 

3) Convert raw data into rich internal instance representations.  

4) Detect when a previous instance or category has been observed. 

5) Detect when a novel instance has been observed.  

6) Generalize instance representations into category representations with little 

or no supervision.  
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Fig. 1 Core pipeline hypothesized to be sufficient to enable continuous object learning  

 

Figure 2 shows the intermediate pipeline being tested for this report. The 

intermediate pipeline in Fig. 2 is the first pass, or initial step, in the process of 

developing a more complete pipeline as defined by Fig. 1. Many of the algorithms 

used in Fig. 2 were already within SS-RICS and allowed us to leverage these 

algorithms to quickly begin testing rapidly. 

 

Fig. 2 Potential cognitive-based model to be tested as an alternate approach to the model 

in Fig. 1 

As part of the APPLE program, we have outlined an informal justification for the 

necessity of each mechanism:  

1) Given a raw data stream and the need for a subset of that data, some kind of 

segmentation, attention, or object discovery mechanism is required to 

retrieve the regions of interest (ROIs).  

2) If we do not ignore agent or object motion, then a tracking facility must 

exist to provide data association between successive “frames” of raw data; 
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this is especially important if the algorithms require processing periods 

longer than framerate.  

3) Given a subset of raw data representing ROIs, instance, category, or novelty 

detection would not be possible without extracting some representation 

suitable for classification. In addition, it must support storage for 

recognition at a later time, and be amenable for generalization of instances 

to categories.  

4) Given a stored representation of instances and categories, recognizing a 

newly observed and described ROI requires some kind of classification 

mechanism.  

5) Without a novelty detection mechanism, there would be no way for the 

classifier to properly output “unknown instance of class”. This is actually a 

major limitation of almost all popularly used machine learning 

classification algorithms, and is an instance of the multi-class open-set 

recognition problem (Scheirer et al. 2014).  

6) Finally, a mechanism to derive categories from instances is required, since 

categories cannot be experienced directly by any embodied system (Owens 

and Osteen 2017). 

3. Intermediate Pipeline 

Figure 2 shows the current state of a baseline pipeline, using the SS-RICS cognitive 

architecture as the pipeline’s underlying foundation. The current approach can be 

summarized as follows: 

1) Sensor data: image color (red, green, blue [RGB]) data for the initial 

baseline is being used. Depth data using point cloud information for shape 

recognition will be added later, either from stereo cameras, RGB-D 

cameras, or laser detection and ranging data. For this report, however, we 

use image RGB data only. 

2) The segmentation/attention and ego-motion and object tracking are in 

parallel for the pipeline in Fig. 1, but the current pipeline uses motion itself 

as a segmentation cue, and therefore segmentation directly follows from 

object motion and tracking. The core of the motion detection algorithm is a 

background subtraction process that yields foreground regions in the 

presence of object or ego-motion. While solid objects will produce motion 

detections and yield the possibility of feature extraction, motion can also be 

detected due to lighting changes in the background that do not correspond 
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to an object (i.e., part of a wall). Also, during ego-motion, most of the 

environment will change from the sensor’s point of view, triggering motion 

detection even for static objects. We are exploring refinements to this 

process that will ameliorate this side effect. 

3) SS-RICS has already implemented saliency algorithms to control attention 

(Itti et al. 1998), but these algorithms are prohibitively slow for the APPLE 

program. We are constructing a goal stack for SS-RICS to control the focus 

of attention, and while this work emphasizes the speed of attention shifts, 

the work is still under development. 

4) The first 2 processes are followed by feature extraction, where we are using 

primarily shape and color. The shape algorithm work is not currently part 

of the initial baseline pipeline. The second feature, color, is extracted from 

the image data and we are exploring ways to optimize the color data 

analysis.  

5) The instance and categorical recognition is currently being done by a 

nonparametric model. Our nonparametric model uses a Pearson’s Product 

Moment Correlation to sort the images found by the motion detection 

algorithms into visually correlated categories. These highly correlated 

categories are then used as input to a neural network, where the output size 

of the neural network is determined by the number of categories used during 

training. We are still refining the number of categories that are then used to 

train the neural network, but for this report networks are trained on 3–5 

categories. The motion detection can give us too many categories, but we 

address this problem with a size limitation variable during the image input. 

In other words, we only look for images that are greater than a certain size 

for possible inclusion as a category. The nonparametric model also does not 

currently function in real time, but as a post hoc sorting process, and we are 

working to include this as a real-time process in the pipeline.  

6) While Fig. 1 shows the novelty being done after the categorical recognition, 

for this work it is being done before the neural network classification, by 

the nonparametric model. The nonparametric model allows us to determine 

if we have existing categories, where categories are not semantic level, but 

rather groups of images that are highly correlated with each other and 

therefore visually similar. We recognize that this may yield multiple 

categories for a single semantic object depending on viewpoint changes, 

and that many images in a category consist of consecutive frames of the 

same image region. However, our goal is to not feed the network an instance 

of what we would consider a new category. The nonparametric model 
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allows us to make this distinction. We also investigated the use of Adaptive 

Resonance Theory (ART) neural networks (Carpenter et al. 1991), which 

are already implemented in SS-RICS, and can also account for the new 

category problem, but we decided to use simple feed-forward networks as 

an initial implementation because we had more control over the code.  

7) Finally, generalization is still an open research question for this project and 

will be defined more fully as the research progresses. 

4. Implementation Overview and Nonparametric Model 

4.1 Overview 

Feature extraction for classification is a difficult research area within computer 

vision. Many techniques (i.e., neural networks or principle components analysis) 

are sensitive to artifacts in the sensor data (e.g., shadows, reflections), which reduce 

the classification performance. Controlling the feature extraction process to 

improve feature stability and robustness in various environments is one of the goals 

of APPLE.  

It is well known that humans use color and shape as primary features for 

determining the identity of objects, so we are focusing on those 2 features to begin. 

Additionally, while a novelty detection algorithm for episodic memories has been 

previously studied (Kelley and McGhee 2013), the algorithm is probably not 

appropriate for the detection of new information that has not already been learned 

by a neural network. Instead, we are using the nonparametric model for such 

determinations. 

4.2 Nonparametric Model 

The nonparametric model was implemented to aid in the training process of a neural 

network, and we will detail our nonparametric model in Fig. 3.  

Our nonparametric model works in 5 stages: motion capture, image resizing; cross-

correlation/color correlation of images; sorting candidates into categories; and 

training the neural net based on the topology defined by the nonparametric sort.  
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Fig. 3 Nonparametric model showing 5 stages: 1) motion collection of objects; 2) resizing; 

3) sorting into correlations; 4) identification of nearest neighbors by correlation; and 5) final 

neural network training 

Stage 1 

We are using motion detection to determine object candidates, reducing the 

complexity of the segmentation problem (see Fig. 4).   
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Fig. 4 Screen shot of robot moving through a laboratory. The 5 differently colored boxes 

indicate possible objects that were acquired by the motion detection algorithm: 1) upper right 

in blue: top of chair, 2) lower right in pink: base of chair, 3) upper left in yellow: wall, 4) lower 

left in green: base of chair, 5) bottom left in pink: robot. The numbers in red indicate the angle 

from the center point of the bounding box. 

First, object motion images are gathered by the motion detection process. They are 

then normalized in size and shape to be cross correlated. The size is arbitrary, which 

we have set to be 50 × 50 currently. This number can be any number desired or set 

to the maximum or average size of the images gathered. 

Stage 2 

Once stage 1 is finished, all the images are correlated using 2 methods: Pearson’s 

Product Moment Correlation (accomplished on a gray-scale of the images) and 

color histogram comparisons. In each case, we do a sequential comparison of one 

image to the rest; selecting the highest correlations and then removing all those 

from the image pool into their own categories. We then proceed recursively through 

the remainder of images until all have been processed. 

Stage 3 

The highest correlations are placed in a category and the next highest in another 

category, and so forth, down to the lowest in the correlation matrix. As each image 
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is placed in its category, a vector is created by converting RGB to HSV color space 

to allow for a pure color extraction of the pixel data using the previously mentioned 

DSpiral algorithm. Each image’s pixel vector is written to a file, which is then 

placed in a category as well. This vector is used to train the neural net. 

We then select the highest correlations from a couple of different categories as the 

positive categories for training the neural net, and correlations around zero with the 

positive categories for the requisite negative training examples. The resultant 

training curve (Fig. 5) shows that the error (red curve) begins at around 0.1, and 

does not deviate throughout the training, demonstrating that error was small. Also, 

the output (green curve) begins low, but improves over time, to a stable value of 

around 0.8, indicating that training was relatively successful.  

The definitions and equations that produced these curves can be found in Appendix 

A. 

 

 

Fig. 5 Sample neural network output trained to asymptotic performance with 5 categories 

collected from a moving robot. The green line is the learning curve and the red line is the error 

rate. In this case, our neural network trained to an acceptable level of about 80 percent. This 

graph was produced with a feed-forward neural network.  

5. Comparison of ARTMap and Feed-Forward Neural Network 

A goal of APPLE is to use state-of-the-art algorithms for each component within 

the pipeline. In order to test various components of the pipeline, we tested 2 

different types of neural networks against each other. We compared the Simplified 

Fuzzy ARTMap neural network (Vakil-Baghmisheh and Pavešić 2003) with a feed-

forward neural network (see Fig. 6).   

Our comparison proceeded as follows: 

 Collect images through motion detection (bounding boxes returned from the 

motion algorithm). 
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 Resize the images to the same size, in this case 50 × 50 pixels for a total of 

2,500. 

 Sort the images into categories using a Pearson’s Product Moment 

Correlation on each jpg (gray scaled) scoring 0.8 or higher. Visual 

inspection showed the images in each category to be fairly homogenous (see 

Appendix B). 

 Extract the pixels using DSpiral from each image in each category and 

collect them in a file for training the neural nets. Each category then has a 

file containing the vector extracted from each image. 

 Cross correlate categories using the same Pearson’s Correlation to find a 

common “negative” category that scored as close to 0.0 as possible and 

“nearest neighbors” for each category to use in classification.  

 All of the categories that shared a common negative are then used as 

positive categories against the negative for a training run. 

 Limit positive categories to those that contain 4 or more vectors as positive 

training sets.  

 Trained both of the neural nets using the same categories for positive 

classifications. Note that the ARTMap generates its own negative 

exemplars, whereas the feed-forward network does not and requires the user 

to provide them. 

 Ran the training data one vector at a time through each neural net and 

collected the scores for each and tallied the percentage correct for each 

category and did the same with the nearest neighbor data. 

 Tallied the overall percentage correct for each training session and 

compared the 2 sets of runs.  

The nearest neighbors were not cross correlated between themselves and were 

also not trained. They were used as a “sanity check” since our vector sets were 

not large enough to withhold positive training data. We have since conducted 

another run on data collection, which yielded adequately large enough results 

to do this, and those results are illustrated in Appendix B.  

  



 

Approved for public release; distribution is unlimited. 

12 

 

 

Fig. 6 Row labels are each neural network type. Column headers are category numbers 

trained as positive examples (each category number is separated by underscores) and the 

results for an outside-the-training-set classification (as percent correct). Results are essentially 

equal (78 vs. 78.4 – last column) for the ARTMap and Netbuilder (feed-forward neural 

network). 

6. Conclusions 

The baseline pipeline continues to be developed, but the initial SS-RICS-based 

implementation has been described here. The methodology described here has 3 

important advantages over the traditional neural network classification of images.  

First, the nonparametric front end to the neural network removes the problem of 

hand crafting the topology of the network before training. The nonparametric model 

determines the number of categories for training to the network without 

programmer interference. Second, the use of motion detection gives us “objectness” 

in a computationally efficient manner (real time using a monocular camera). Third, 

if additional categories are discovered by the nonparametric model, the network 

can be retrained autonomously, without any additional input from a programmer. 

This allows for continuous adaptation over time. Finally, the neural network 

comparison showed that the ARTMap network was equal to a feed-forward 

network for out-of-training-set classification. Additionally, the ARTMap claims to 

not suffer from catastrophic forgetting, in which case it would be the more 

advantageous choice for the classification network. 

We have shown preliminary results from initial tests using a motion detection 

algorithm to delineate objects which are then fed to a simple feed-forward neural 

network without any other processes in the pipeline. Our neural network trains to 

an asymptote of acceptable performance and our topology can be defined using our 

nonparametric model. ARL will continue research to determine the best algorithms 

to use in the pipeline for the APPLE program. 

Method Run result (% correct)

50_339 0_347 30_169_241_293 179_233_283 152_340 39_73 18_107 192_234 76_230_270 305_329

ARTMap 76 92 72 83 100 100 49 50 83 75 78

Netbuilder 100 92 41 62 100 100 52 100 62 75 78.4
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Appendix A. Epoch Graph Produced by Neural Net
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Figure A-1 shows a graph produced by our neural net, which we call Netbuilder, 

after training 3 outputs over 100 epochs.  

 

Fig. A-1 Adequate training accomplished 

The values in the output graph (in green and above the error graph) are produced 

by summing the squares of the output values of each layer’s propagation (which is 

its calculated percentage correct) and taking the square root of their mean (root 

mean square): 

 

Let 𝑛 = the number of output layers  

Let 𝑡𝑖 = the output value of each layer’s current epoch 

Let 𝑚 = the number of epochs generated 

Let 𝑝𝑗 = each output point plotted on the graph 

 

Thus

 

  

 𝑓𝑜𝑟 (𝑗 = 1, 𝑚)  𝑝𝑗 = √
∑ 𝑡𝑖

2𝑛
𝑖=0

𝑛
 (1) 

 

Each value for the error graph is computed taking the sum of the squares of the 

target; the output of each layer divided by 2: 

Let 𝑛 = the number of output layers  

Let 𝑎𝑖 = the output value of each layer’s current epoch (probability that it belongs to 

the corresponding output category) 

Let 𝑡𝑖 = the target value of each layer’s current epoch 

Let 𝑚 = the number of epochs generated 

Let 𝑝𝑗 = each output point plotted on the graph 
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Thus  

  

 𝑓𝑜𝑟 (𝑗 = 1, 𝑚)  𝑝𝑗 =
∑ (𝑡𝑖−𝑎𝑖)2𝑛

𝑖=0 

2
 (2) 

 

The output graph is used to determine whether or not the net has been trained 

satisfactorily. If the graph is smooth and trends (logarithmically) to 1 from 0 then 

our assessment is that the training was successful. Deviations from this indicate 

less-than-optimal training, but possibly still acceptable given the quality of the data 

obtained. 

The error graph is less important until the output graph becomes noticeably 

irregular and/or not trending toward 1 (which denotes 100% success). But, at such 

a point, the training is deemed unsatisfactory and the training data are discarded. 

Figure A-1 shows a “good” graph. Figures A-2 and A-3 show an “acceptable” graph 

and a “rejectable” graph, respectively. 

 

Fig. A-2 “Acceptable” graph 

 

Fig. A-3 “Rejectable” graph 
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Appendix B. Test of Efficacy of Categorization through 
Correlation Clustering
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The clustering mechanism uses a Pearson’s Correlation (with an acceptance 

threshold of 0.85) on the resized images harvested during motion detection. This 

mechanism is not perfect, but in most cases results in a fairly homogenous set of 

individual categories suitable for training a neural net. In order to provide a check 

after visual inspection of the categories, a test was run on a set of 3 categories, 

which were cross correlated to find a common orthogonal category.  

Table B-1 shows which categories correlated least and most with each other, and 

illustrates the categories chosen for this test. 

Table B-1 Spreadsheet generated to identify categories 

Run Cat Vecs Least Corr Most Corr 

all 746 5 55 –0.09997 750 0.790639 

all 1078 26 55 –0.09979 952 0.796281 

all 1736 5 55 –0.09993 1738 0.775841 

 

The categories (Cat) chosen as positive examples are 746, 1078, and 1736 with 5, 

26, and 5 vectors each, respectively—and the negative (least correlated) category 

is 55 with 3 vectors. Due to the nature of our collection mechanism, small numbers 

of vectors in each category can be quite common. 

We removed about one fifth of the vectors from the largest category, 1078, and 

trained the net on the categories mentioned above with the resultant root-mean-

square and error curves depicting success (illustrated in Figs. B-1 through B-11). 

 

Fig. B-1 Acceptable training for the neural network using the categories in Table 1 

 



 

Approved for public release; distribution is unlimited. 

21 

 

Fig. B-2 Results for training set 746 

 

 

Fig. B-3 Results for training set 1078 (minus withheld vectors) 
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Fig. B-4 Results for training set 1078 (using withheld vectors) 

 

 

Fig. B-5 Results for training set 1078 (all vectors included) 
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Fig. B-6 Results for training set 1736 

The training sets are as follows (note that the images might be uninterpretable due 

to resizing). 

 

Fig. B-7 Training set 746 

 

 

Fig. B-8 Training set 1078 (all shown; 5 were withheld for test) 
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Fig. B-9 Training set 1736 

 

 

Fig. B-10 Training set 55 (negative category) 

 

 

Fig. B-11 The distribution of vectors per category for the run that produced the results; 1,964 

categories were produced 
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List of Symbols, Abbreviations, and Acronyms 

3-D 3-dimensional 

ACT-R Adaptive Character of Thought – Rational  

AI artificial intelligence 

APPLE Adaptive Perception Processes for Learning from Experience 

ARL US Army Research Laboratory 

ART Adaptive Resonance Theory 

HRED Human Research and Engineering Directorate 

Open CV Open Computer Vision  

RGB red, green, blue 

ROI region of interest  

SfM Structure from Motion  

SS-RICS Symbolic and Sub-symbolic Robotics Intelligence Control System  

VTD Vehicle Technology Directorate 
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